You MAY use your calculators.

Distance $x(\mathrm{~cm})$	0	1	5	6	8
Temp $T(x)$ (Celsius)	100	93	70	62	55

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature $T(x)$, in degrees Celsius, of the wire $x \mathrm{~cm}$ from the heated end. The function T is decreasing and twice differentiable.
(a) Estimate $T^{\prime}(7)$. Show the work that leads to your answer. Indicate units of measure.
(b) Write an integral expression in terms of $T(x)$ for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.
(c) Find $\int_{0}^{8} T^{\prime}(x) \mathrm{d} x$, and indicate units of measure. Explain the meaning of $\int_{0}^{8} T^{\prime}(x) \mathrm{d} x$ in terms of the temperature of the wire.
(d) Are the data in the table consistent with the assertion that $T^{\prime \prime}(x)>0$ for every x in the interval $0<x<8$? Explain your answer.

