You MAY NOT use your calculators.

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [0,4). The function f is twice differentiable except at x=2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x=2.

(a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.

(b) On the axes provided, sketch the graph of a function that has all the characteristics of f.

⁽d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.