You MAY NOT use your calculators.

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$	3	$3<x<4$
$f(x)$	-1	Negative	0	Positive	2	Positive	0	Negative
$f^{\prime}(x)$	4	Positive	0	Positive	DNE	Negative	-3	Negative
$f^{\prime \prime}(x)$	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval $[0,4)$. The function f is twice differentiable except at $x=2$. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at $x=2$.
(a) For $0<x<4$, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
(b) On the axes provided, sketch the graph of a function that has all the characteristics of f.

(c) Let g be the function defined by $g(x)=\int_{1}^{x} f(t) \mathrm{d} t$ on the open interval $(0,4)$. For $0<x<4$, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.
(d) For the function g defined in part (c), find all values of x, for $0<x<4$, at which the graph of g has a point of inflection. Justify your answer.

