You MAY NOT use your calculators.


A car is traveling on a straight road. For $0 \leq t \leq 24$ seconds, the car's velocity $v(t)$, in meters per second, is modeled by the piecewise-linear function defined by the graph above.
(a) Find $\int_{0}^{24} v(t) \mathrm{d} t$. Using correct units, explain the meaning of $\int_{0}^{24} v(t) \mathrm{d} t$.
(b) For each of $v^{\prime}(4)$ and $v^{\prime}(20)$, find the value or explain why it does not exist. Indicate units of measure.
(c) Let $a(t)$ be the car's acceleration at time $t$, in meters per second per second. For $0<t<24$, write a piecewise-defined function for $a(t)$.
(d) Find the average rate of change of $v$ over the interval $8 \leq t \leq 20$. Does the Mean Value Theorem guarantee a value of $c$, for $8<t<20$, such that $v^{\prime}(c)$ is equal to this average rate of change? Why or why not?

