You MAY use your calculators.

The graph of the function f shown above consists of six line segments. Let g be the function given by $g(x)=\int_{0}^{x} f(t) \mathrm{d} t$.
(a) Find $g^{\prime}(4)$, and $g^{\prime \prime}(4)$.
(b) Does g have a relative minimum, a relative maximum, or neither at $x=1$? Justify your answer.
(c) Suppose that f is defined for all real numbers x and is periodic with a period of length 5 . The graph above shows two periods of f. Given that $g(5)=2$, find $g(10)$ and write an equation for the line tangent to the graph of g at $x=108$.

