You MAY NOT use your calculators.

The twice-differentiable function f is defined for all real numbers and satisfies the following conditions: $f(0)=2, f^{\prime}(0)=-4$ and $f^{\prime \prime}(0)=3$.
(a) The function g is given by $g(x)=e^{a x}+f(x)$ for all real numbers, where a is a constant. Find $g^{\prime}(0)$ and $g^{\prime \prime}(0)$ in terms of a. Show the work that leads to your answers.
(b) The function h is given by $h(x)=f(x) \cos (k x)$ for all real numbers where k is a constant. Find $h^{\prime}(x)$ and write an equation for the tangent to the graph of h at $x=0$.

