You MAY use your calculators.

x	$f(x)$	$f^{\prime}(x)$	$\mathrm{g}(\mathrm{x})$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.
(a) Explain why there must be a value r for $1<r<3$ such that $h(r)=-5$.
(b) Explain why there must be a value c for $1<c<3$ such that $h^{\prime}(c)=-5$.
(c) Let w be the function given by $w(x)=\int_{1}^{g(x)} f(t) \mathrm{d} t$. Find the value of $w^{\prime}(3)$
(d) If g^{-1} is the inverse of g, write an equation for the line tangent to the graph of $y=g^{-1}(x)$ at $x=2$.

