You MAY NOT use a calculator.

Let f be a function that is twice differentiable for all real numbers. The table below gives values of f for selected points in the closed interval $2 \le x \le 13$.

x	2	3	5	8	13
f(x)	1	4	-2	3	6

(a) Estimate f'(4). Show the work that leads to your answer.

(b) Evaluate $\int_{2}^{13} (3-5f'(x)) dx$. Show the work that leads to your answer.

(c) Use a left Riemann sum with subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) dx$.

(d) Suppose f'(5) = 3 and f''(x) < 0 for all x in the closed interval $5 \le x \le 8$. Use the line tangent to the graph of f at x = 5 to show that $f(7) \le 4$. Use the secant line for the graph of f on $5 \le x \le 8$ to show that $f(7) \ge \frac{4}{3}$.