You MAY NOT use a calculator.
The derivative of a function f is defined by $f^{\prime}(x)=\left\{\begin{array}{cl}g(x) & \text { if }-4 \leq x \leq 0 \\ 5 e^{-x / 3}-3 & \text { if } 0<x \leq 4\end{array}\right.$. The graph of the continuous function f^{\prime}, shown in the figure below, has x-intercepts at $x=-2$ and $x=3 \ln \left(\frac{5}{3}\right)$. The graph of g on $-4 \leq x \leq 0$ is a semicircle, and $f(0)=5$.

(a) For $-4<x<4$, find all values of x at which the graph of f has a point of inflection. Justify your answer.
(b) Find $f(-4)$ and $f(4)$.
(c) For $-4 \leq x \leq 4$, find the value of x at which f has an absolute maximum. Justify your answer.

