There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 a.m., snow accumulates on the driveway at a rate modeled by $f(t)=7 t e^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 a.m. $(t=6)$. The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$
g(t)=\left\{\begin{array}{cl}
0 & \text { if } 0 \leq t<6 \\
125 & \text { if } 6 \leq t<7 \\
108 & \text { if } 7 \leq t \leq 9
\end{array}\right.
$$

(a) How many cubic feet of snow have accumulated on the driveway by 6 a.m.?
(b) Find the rate of change of the volume of snow on the driveway at 8 a.m.
(c) Let $h(t)$ represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain $0 \leq t \leq 9$.
(d) How many cubic feet of snow are on the driveway at 9 a.m.?

