You MAY NOT use a calculator.

The function g is defined and differentiable on the closed interval $[-7,5]$ and satisfies $g(0)=5$. The graph of $y=g^{\prime}(x)$, the derivative of g, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find $g(3)$ and $g(-2)$.
(b) Find the x-coordinate of each point of inflection of the graph of $y=g(x)$ on the interval $-7<x<5$. Explain your reasoning.
(c) The function h is defined by $h(x)=g(x)-\frac{1}{2} x^{2}$. Find the x-coordinate of each critical point of h, where $-7<x<5$, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.

