

The continuous function f is defined on the interval $-4 \leq x \leq 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above. Let $g(x)=2 x+\int_{0}^{x} f(t) d t$.
(a) Find $g(-3)$. Find $g^{\prime}(x)$ and evaluate $g^{\prime}(-3)$.
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \leq x \leq 3$.
(c) Find all values of x on the interval $-4 \leq x \leq 3$ for which the graph of g has a point of inflection. Give a reason for your answer.
(d) Find the average rate of change of f on the interval $-4 \leq x \leq 3$. There is no point $c,-4 \leq c \leq 3$, for which $f^{\prime}(c)$ is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.

