You MAY use a calculator.

A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by $v(t) = -2 + (t^2 + 3t)^{6/5} - t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10.

(a) Find all the values in the interval $2 \le t \le 4$ for which the speed of the particle is 2.

⁽b) Write an expression involving an integral that gives the position s(t). Use this expression to find the position of the particle at time t = 5.

(c) Find all the times t in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer.

(d) Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer.