

You MAY NOT use a calculator.



Graph of f'

The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval  $0 \le x \le 8$ . The graph of f' has horizontal tangent lines at x = 1, x = 3 and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4.

(a) Find all the values of x on the open interval 0 < x < 8 for which the function f has a local minimum. Justify your answer.



(c) On what open intervals contained in 
$$0 < x < 8$$
 is the graph of  $f$  both concave down and increasing?

<sup>(</sup>d) The function g is defined by  $g(x)=(f(x))^3$ . If  $f(3)=-\frac{5}{2}$ , find the slope of the line tangent to the graph of g at x=3.