Advanced Placement Calculus

Precalculus Review

Functions and Their Graphs
Types of Functions-Shifting and Scaling
Trigonometry Review
Absolute Value and Inequalities

1. Given $f(x)=2 x^{2}+3 x-4$ find $f(0), f(2), f(\sqrt{2}), f(1+\sqrt{2}), f(-x), f(x+h), 2 f(x)$, and $f(2 x)$.
2. Given $f(x)=x-x^{2}$, find $\frac{f(x+h)-f(x)}{h}$.
3. Find the domain and range of $f(x)=6-4 x$ on $[-2,3]$.
4. Find the domain and range of $f(x)=\sqrt{2 x-5}$.
5. Find the domain of $g(x)=\frac{x+2}{x^{2}-1}$.
6. Find the domain of $f(x)=\sqrt[4]{x^{2}-6 x}$.
7. Find the domain of $f(x)=\sqrt{\frac{x}{\pi-x}}$.
8. Find the domain and range of $f(x)=\sqrt{-x}$.
9. Find the domain and range of $g(x)=\frac{x^{2}-1}{x-1}$.
10. Find the domain of $f(x)= \begin{cases}0 & x<2 \\ 1 & x \geq 2\end{cases}$
11. Find the domain and sketch the graph of $g(x)=\left\{\begin{array}{cc}-1 & x \leq-1 \\ 3 x+2 & |x|<1 \\ 7-2 x & x \geq 1\end{array}\right.$.
12. Determine if the graph below represents a function. If it does, find the domain and range.

13. Write a function whose graph is the given curve.

14. A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 inches by 20 inches by cutting out equal squares of side x at each corner and then folding up the sides. Express the volume V of the box as a function of x.
15. Determine if $f(x)=x^{-2}$ is odd, even, or neither.
16. Determine if $g(x)=x^{2}+x$ is odd, even, or neither.
17. Determine if $f(x)=x^{3}-x$ is odd, even, or neither.

For 18 and 19, find $f \circ g, g \circ f$ and their domains.
18. $f(x)=\frac{1}{x}$ and $g(x)=x^{3}+2 x$
19. $f(x)=\sqrt[3]{x}$ and $g(x)=1-\sqrt{x}$

For problems 1-4, classify each function as power, root, polynomial, rational, logarithmic, exponential, trigonometric or algebraic.

1. $f(x)=\sqrt[5]{x}$
2. $f(x)=\frac{x-2}{x+6}$
3. $f(x)=5^{x}$
4. $g(x)=x^{4}$
5. Consider the function f. Tell how the graph of the following would change the graph of f.
(a) $f(2 x)$
(b) $f(x-3)$
(c) $f(x)+4$
(d) $-f(x)$
(e) $-f(-x)$
(f) $4 f(x)$
6. Describe how the graph of $f(x)=-\frac{1}{x}$ would differ from the graph of $f(x)=\frac{1}{x}$.
7. Describe how the graph of $f(x)=\frac{1}{x-3}$ would differ from the graph of $f(x)=\frac{1}{x}$.
8. Describe how the graph of $f(x)=2+\frac{1}{x-3}$ would differ from the graph of $f(x)=\frac{1}{x}$.
9. Describe how the graph of $f(x)=-x^{2}+2 x+1$ would differ from the graph of $f(x)=x^{2}$. (Hint: Complete the square to the the translated parabola in standard form.)
10. Describe how the graph of $f(x)=2-\sqrt{x+1}$ would differ from the graph of $f(x)=\sqrt{x}$.
11. Describe how the graph of $f(x)=1-(x-8)^{6}$ would differ from the graph of $f(x)=x^{6}$.

Trigonometry Review

1. Convert the following from degrees to radians:
(a) 210°
(b) 900°
(c) 9°
2. Convert the following from radians to degrees:
(a) 4π
(b) $\frac{3 \pi}{8}$
(c) $\frac{5 \pi}{12}$
3. Find the value of all six trigonometric ratios for $\frac{3 \pi}{4}$.
4. Find the value of all six trigonometric ratios for $\frac{5 \pi}{6}$.
5. Find the value of all six trigonometric ratios for $\frac{4 \pi}{3}$.
6. Find the remaining trigonometric ratios if $\sin x=\frac{3}{5}$ where $x \in\left(0, \frac{\pi}{2}\right)$.
7. Find the remaining trigonometric ratios if $\sec x=-\frac{3}{2}$ where $x \in\left(\frac{\pi}{2}, \pi\right)$.
8. Find, correct to three decimals the length of the side labeled x.

Trigonometric Graphs
Determine the amplitude, period and phase-shift, the graph using the "box" method demonstrated in class.
Make sure all points are appropriately labeled.

1. $y=\sin (2 x-\pi)$
2. $y=\sin \frac{x}{2}$
3. $y=2 \cos 2 x$
4. $y=\sin (x+\pi)$
5. $y=\cos \left(2 x-\frac{\pi}{3}\right)$
6. $y=\cos \left(x-\frac{\pi}{2}\right)$
7. $y=1+\cos \left(x-\frac{\pi}{2}\right)$
8. $y=\sin \left(x-\frac{\pi}{2}\right)$
9. $y=-1+\sin \left(x-\frac{\pi}{2}\right)$
10. $y=1+2 \sin \left(3 x-\frac{\pi}{2}\right)$

Problems 1-7, rewrite the following without absolute value.

1. $|5-23|$
2. $|-\pi|$
3. $|\sqrt{5}-5|$
4. $|x-2|$ if $x<2$
5. $|x+1|$
6. $\left|x^{2}+1\right|$
7. $|2 x-3|$

Problems 8-10, write out the meaning of the following in "plain" English.
8. $|x-2|<5$
9. $|x-3|>3$
10. $|x+3|<6$

Solve the following.
11. $4 x<2 x+1<3 x+2$
12. $1-x \geq 3-2 x>x-6$
13. $(x-2)(x-1)>0$
14. $2 x^{2}+x \leq 1$
15. $x^{2}+x+1>0$
16. $x^{2} \leq 3$
17. $x^{3}-x^{2} \leq 0$
18. $x^{3}>x$
19. $\frac{1}{x}<4$ (Be careful! It is never a good idea to multiply both sides of an inequality by a variable!)
20. $\frac{4}{x}<x$
21. $\frac{2 x+1}{x-5}<3$
22. $\frac{x^{2}-1}{x^{2}+1} \geq 0$
23. $|2 x|=3$
24. $|x+3|=|2 x+1|$
25. $|x|<3$
26. $|x-4|<1$
27. $|x-5| \geq 2$
28. $|5 x-2|<6$
29. $\left|\frac{x}{2+x}\right|<1$
30. $\left|\frac{2-3 x}{1+2 x}\right| \leq 4$

