## **Advanced Placement Calculus**

Precalculus Review

Functions and Their Graphs Types of Functions–Shifting and Scaling Trigonometry Review Absolute Value and Inequalities 1. Given  $f(x) = 2x^2 + 3x - 4$  find  $f(0), f(2), f(\sqrt{2}), f(1 + \sqrt{2}), f(-x), f(x+h), 2f(x)$ , and f(2x).

2. Given 
$$f(x) = x - x^2$$
, find  $\frac{f(x+h) - f(x)}{h}$ .

3. Find the domain and range of f(x) = 6 - 4x on [-2, 3].

4. Find the domain and range of  $f(x) = \sqrt{2x-5}$ .

5. Find the domain of  $g(x) = \frac{x+2}{x^2-1}$ .

6. Find the domain of  $f(x) = \sqrt[4]{x^2 - 6x}$ .

7. Find the domain of  $f(x) = \sqrt{\frac{x}{\pi - x}}$ .

8. Find the domain and range of  $f(x) = \sqrt{-x}$ .

9. Find the domain and range of  $g(x) = \frac{x^2 - 1}{x - 1}$ .

10. Find the domain of  $f(x) = \left\{ \begin{array}{cc} 0 & x < 2 \\ 1 & x \geq 2 \end{array} \right.$ 

11. Find the domain and sketch the graph of  $g(x) = \begin{cases} -1 & x \le -1 \\ 3x + 2 & |x| < 1 \\ 7 - 2x & x \ge 1 \end{cases}$ .

12. Determine if the graph below represents a function. If it does, find the domain and range.



13. Write a function whose graph is the given curve.



14. A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 inches by 20 inches by cutting out equal squares of side x at each corner and then folding up the sides. Express the volume V of the box as a function of x.

15. Determine if  $f(x) = x^{-2}$  is odd, even, or neither.

16. Determine if  $g(x) = x^2 + x$  is odd, even, or neither.

17. Determine if  $f(x) = x^3 - x$  is odd, even, or neither.

For 18 and 19, find  $f \circ g$ ,  $g \circ f$  and their domains.

18. 
$$f(x) = \frac{1}{x}$$
 and  $g(x) = x^3 + 2x$ 

19.  $f(x) = \sqrt[3]{x}$  and  $g(x) = 1 - \sqrt{x}$ 

For problems 1-4, classify each function as power, root, polynomial, rational, logarithmic, exponential, trigonometric or algebraic.

1. 
$$f(x) = \sqrt[5]{x}$$

2. 
$$f(x) = \frac{x-2}{x+6}$$

- 3.  $f(x) = 5^x$
- 4.  $g(x) = x^4$
- 5. Consider the function f. Tell how the graph of the following would change the graph of f.
  - (a) f(2x)
  - (b) f(x-3)
  - (c) f(x) + 4
  - (d) -f(x)
  - (e) -f(-x)
  - (f) 4f(x)

6. Describe how the graph of  $f(x) = -\frac{1}{x}$  would differ from the graph of  $f(x) = \frac{1}{x}$ .

7. Describe how the graph of  $f(x) = \frac{1}{x-3}$  would differ from the graph of  $f(x) = \frac{1}{x}$ .

8. Describe how the graph of  $f(x) = 2 + \frac{1}{x-3}$  would differ from the graph of  $f(x) = \frac{1}{x}$ .

9. Describe how the graph of  $f(x) = -x^2 + 2x + 1$  would differ from the graph of  $f(x) = x^2$ . (Hint: Complete the square to the the translated parabola in standard form.)

10. Describe how the graph of  $f(x) = 2 - \sqrt{x+1}$  would differ from the graph of  $f(x) = \sqrt{x}$ .

11. Describe how the graph of  $f(x) = 1 - (x - 8)^6$  would differ from the graph of  $f(x) = x^6$ .

## **Trigonometry Review**

- 1. Convert the following from degrees to radians:
  - (a)  $210^{\circ}$
  - (b) 900°
  - (c) 9°
- 2. Convert the following from radians to degrees:
  - (a) 4π

(b) 
$$\frac{3\pi}{8}$$

- (c)  $\frac{5\pi}{12}$
- 3. Find the value of all six trigonometric ratios for  $\frac{3\pi}{4}$ .

4. Find the value of all six trigonometric ratios for  $\frac{5\pi}{6}$ .

5. Find the value of all six trigonometric ratios for  $\frac{4\pi}{3}$ .

6. Find the remaining trigonometric ratios if  $\sin x = \frac{3}{5}$  where  $x \in \left(0, \frac{\pi}{2}\right)$ .

7. Find the remaining trigonometric ratios if  $\sec x = -\frac{3}{2}$  where  $x \in \left(\frac{\pi}{2}, \pi\right)$ .

8. Find, correct to three decimals the length of the side labeled x.



Determine the amplitude, period and phase-shift, the graph using the "box" method demonstrated in class. Make sure all points are appropriately labeled.

1.  $y = \sin(2x - \pi)$ 

2. 
$$y = \sin \frac{x}{2}$$

3.  $y = 2\cos 2x$ 

4.  $y = \sin(x + \pi)$ 

5. 
$$y = \cos\left(2x - \frac{\pi}{3}\right)$$

6. 
$$y = \cos\left(x - \frac{\pi}{2}\right)$$

7. 
$$y = 1 + \cos\left(x - \frac{\pi}{2}\right)$$

8. 
$$y = \sin\left(x - \frac{\pi}{2}\right)$$

9. 
$$y = -1 + \sin\left(x - \frac{\pi}{2}\right)$$

10.  $y = 1 + 2\sin\left(3x - \frac{\pi}{2}\right)$ 

## Inequalities and Absolute Value

Problems 1-7, rewrite the following without absolute value.

1. |5-23|

2.  $|-\pi|$ 

3.  $|\sqrt{5} - 5|$ 

4. |x-2| if x < 2

5. |x+1|

6.  $|x^2 + 1|$ 

7. |2x - 3|

Problems 8-10, write out the meaning of the following in "plain" English.

8. |x-2| < 5

9. |x-3| > 3

Solve the following.

11. 4x < 2x + 1 < 3x + 2

12.  $1 - x \ge 3 - 2x > x - 6$ 

13. (x-2)(x-1) > 0

14.  $2x^2 + x \le 1$ 

15.  $x^2 + x + 1 > 0$ 

16.  $x^2 \le 3$ 

17.  $x^3 - x^2 \le 0$ 

18.  $x^3 > x$ 

19.  $\frac{1}{x} < 4$  (Be careful! It is never a good idea to multiply both sides of an inequality by a variable!)

20.  $\frac{4}{x} < x$ 

21. 
$$\frac{2x+1}{x-5} < 3$$

22. 
$$\frac{x^2 - 1}{x^2 + 1} \ge 0$$

23. |2x| = 3

24. |x+3| = |2x+1|

25. |x| < 3

26. |x-4| < 1

27.  $|x-5| \ge 2$ 

28. |5x - 2| < 6

$$29. \ \left|\frac{x}{2+x}\right| < 1$$

$$30. \ \left|\frac{2-3x}{1+2x}\right| \le 4$$