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Definition of Derivative

1. If f(x) = 3x2 − 5x, find f ′(x) using the definition of derivative. Then find f ′(2) and use it to write an equation of a
tangent to the parabola y = 3x2 − 5x at (2, 2).

2. If F (x) = x3 − 5x+ 1, find F ′(x) using the definition of derivative. Then find F ′(0) and use it to write an equation of
a tangent to the curve y = x3 − 5x+ 1 at (0, 1).

3. A particle moves along a straight line with equation of motion f(t) = t2 − 6t− 5 where position is measured in meters
and time in seconds. Find the velocity at t = 2.
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For the following functions, find the derivative using the definition of derivative.

4. f(x) = 1 + x− 2x2

5. f(x) =
x

2x− 1

6. f(x) =
2√
3− x
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7. Consider lim
h→0

√
1 + h− 1

h
. This limit represents the derivative of some function at some number. Find the function and

the number at which the derivative is being taken.

8. Consider lim
h→0

(2 + h)3 − 8

h
. This limit represents the derivative of some function at some number. Find the function and

the number at which the derivative is being taken.

9. Consider lim
t→0

sin
(π
2
+ t

)
− 1

t
. This limit represents the derivative of some function at some number. Find the function

and the number at which the derivative is being taken.

10. Consider lim
h→0

sin(x+ h)− sinx

h
. This limit represents the derivative of some function at some number. Find the

function and the number at which the derivative is being taken.
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11. Given f(x) = 5x+ 3, find f ′(x) using the definition of derivative.

12. Given f(x) = x3 − x2 + 2x, find f ′(x) using the definition of derivative.

13. Given G(x) =
√
1 + 2x, find G′(x) using the definition of derivative.
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14. Given f(x) = x4, find f ′(x) using the definition of derivative.

15. Use the sketch of f given below to estimate the following: f ′(−3), f ′(1.5), f ′(−1) and f ′(−4).
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16. For the function graphed below, sketch the graph of f ′(x). Draw f ′(x) right on the same grid.

17. For the function graphed below, sketch the graph of f ′(x). Draw f ′(x) right on the same grid.

18. For the function graphed below, sketch the graph of f ′(x). Draw f ′(x) right on the same grid.
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Tangents, Velocities and Other Rates of Change

1. Using the definition of derivative, find the slope of the tangent line to the parabola y = x2 + 2x at the point (−3, 3).

2. Using the definition of derivative, find the slope of the tangent line to the parabola y = 1−2x−3x2 at the point (−2,−7).
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3. Using the definition of derivative, find the slope of the tangent line to the curve y =
1

x2
at x = −2.

4. Using the definition of derivative, find the slope of the tangent line to the curve y =
2

x+ 3
at x = −1.
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5. If a ball is thrown vertically upward with a velocity of 40 feet per second, its height in feet after t seconds is given by
y = 40t− 16t2. Using the definition of derivative, find the velocity when t = 2.

6. The displacement in meters of a particle moving in a straight line is given by s = t2 − 8t + 18, where t is measured
in seconds. Find the average velocity on the the following intervals: [3, 4], [3.5, 4], [4, 5] and [4, 4.5]. Then, using the
definition of derivative, find the velocity when t = 4.
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Differentiation Theorems

1. Given f(x) = x2 − 10x+ 100, find f ′(x).

2. Given V (r) =
4

3
πr3, find V ′(r).

3. Given F (x) = (16x)3, find F ′(x).

4. Given Y (t) = 6t−9, find Y ′(t).

5. Given g(x) = x2 +
1

x2
, find g′(x).
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6. Given h(x) =
x+ 2

x− 1
, find h′(x).

7. Given G(s) = (s2 + s+ 1)(s2 + 2), find G′(s).

8. Given H(t) = 3
√
t(t+ 2), find H ′(t).

9. Given y =
x2 + 4x+ 3√

x
, find

dy

dx
.
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10. Given y =
√
5x, find

dy

dx
.

11. Given y =
1

x4 + x2 + 1
, find

dy

dx
.

12. Given y = ax2 + bx+ c where a, b and c are constants, find
dy

dx
.

13. Given y =
3t− 7

t2 + 5t− 4
, find

dy

dt
.
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14. Given y = x+
5
√
x2, find

dy

dx
.

15. Given f(x) = x
√
2, find f ′(x).

16. Given v = x
√
x+

1

x2
√
x

, find
dv

dx
.

17. Given f(x) =
x

x+
c

x

, where c is a constant, find f ′(x).
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18. Given f(x) =
x5

x3 − 2
, find f ′(x).

19. Write an equation of a line tangent to y =
x

x− 3
at the point (6, 2).

20. Write an equation of a line tangent to y = x5/2 at the point (4, 32).

21. Write an equation of a line tangent to y = x+
4

x
at the point where x = 2.
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22. Find the equations of the tangent lines to the curve y =
x− 1

x+ 1
that are parallel to the line x− 2y = 1.

23. At what point on the curve y = x
√
x is the tangent line parallel to 3x− y + 6 = 0?
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24. For what values of x does the graph of f(x) = 2x3 − 3x2 − 6x+ 87 have a horizontal tangent?

25. Find the points on the curve y = x3 − x2 − x+ 1 where the tangent is horizontal.
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26. Find the equations of both lines that pass through the point (2,−3) that are tangent to the curve y = x2 + x.

27. Write an equation of the normal to y = 1− x2 at the point (2,−3).
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28. Write an equation of the normal to y = 3
√
x at the point (−8,−2).

29. At what point on the curve y = x4 does the normal line have slope 16?
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Derivatives of the Trigonometric Functions

1. Evaluate: lim
x→0

(x2 + cosx)

2. Evaluate: lim
x→π/3

(sinx− cosx)

3. Evaluate: lim
t→π/4

sin 5t

t

4. Evaluate: lim
x→0

sin(cosx)

secx

5. Evaluate: lim
x→π/4

sinx

3x
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6. Evaluate: lim
x→π/4

tanx

4x

7. Evaluate: lim
x→0

sin2 x

x

8. Evaluate: lim
x→0

tan 3x

3 tan 2x

9. Given y = cosx− 2 tanx, find
dy

dx
.

10. Given y = sinx+ cosx, find
dy

dx
.
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11. Given y = x cscx, find
dy

dx
.

12. Given y = cscx cotx, find
dy

dx
.

13. Given y =
sinx

1 + cosx
, find

dy

dx
.

14. Given y =
tanx

x
, find

dy

dx
.

15. Given y =
x

sinx+ cosx
, find

dy

dx
.
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16. Given f(x) = x−3 sinx tanx, find f ′(x).

17. Given g(x) =
x2 tanx

secx
, find g′(x).

18. Write an equation of the line tangent to y = x cosx at the point (π,−π).

19. Write an equation of the line tangent to f(x) = tanx at the point
(π
4
, 1
)

.

20. Write an equation of the line tangent to g(x) = 2 sinx at the point where x =
π

6
.
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21. For what values of x does the graph of f(x) = x+ 2 sinx have a horizontal tangent?
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The Chain Rule

1. Given y = u2 and u = x2 + 2x+ 3, find
dy

dx
.

2. Given y = u2 − 2u+ 3 and u = 5− 6x, find
dy

dx
.

3. Given y = u3 and u = x+
1

x
, find

dy

dx
.

4. Given y = u− u2 and u =
√
x+ 3

√
x, find

dy

dx
.
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5. Given F (x) = (x2 + 4x+ 6)2, find F ′(x).

6. Given G(x) = (x3 − 5x)4, find G′(x).

7. Given g(x) = (3x− 2)10(5x2 − x+ 1)12, find g′(x).

8. Given f(t) = (2t2 − 6t+ 1)−8, find f ′(t).

9. Given g(x) =
√
x2 − 7x, find g′(x).
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10. Given h(t) =

(
t− 1

t

)3/2

, find h′(t).

11. Given f(y) =

(
y − 6

y + 7

)3

, find f ′(y).

12. Given s(t) =
4

√
t3 + 1

t3 − 1
, find s′(t).

13. Given f(z) =
1

5
√
2z − 1

, find f ′(z).
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14. Given y = tan 3x, find
dy

dx
.

15. Given f(x) = cos(x3), find f ′(x).

16. Given f(x) = cos3 x, find f ′(x).

17. Given y =
(
1 + cos2 x

)6
, find

dy

dx
.

18. Given y = cos(tanx), find
dy

dx
.
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19. Given f(x) = sec2 2x− tan2 2x, find f ′(x).

20. Given y = csc
(x
3

)
, find

dy

dx
.

21. Given y = sin3 x+ cos3 x, find
dy

dx
.

22. Given p(x) = sin

(
1

x

)
, find p′(x).

23. Given y =
1 + sinx

1− sinx
, find

dy

dx
.
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24. Given y = tan2 x2, find
dy

dx
.

25. Given y =
√

x+
√
x, find

dy

dx
.

26. Write an equation of the tangent to the curve y = (x3 − x2 + x− 1)10 at the point (1, 0).

27. Write an equation of the tangent to the curve f(x) =
8√

4 + 3x
at the point (4, 2).
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28. Find all the points on the graph of the function f(x) = 2 sinx+ sin2 x at which the tangent line is horizontal.

29. Suppose that F (x) = f(g(x)) and g(3) = 6, g′(3) = 4, f ′(3) = 2 and f ′(6) = 7. Find F ′(3).
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Additional Chain Rule Problems

1. Given h(x) = f(g(x)) and f(2) = 5, f ′(2) = 6, g(3) = 2 and g′(3) = 5, find h′(3).

2. Given p(x) = q(r(x)) and q(−2) = 5, q′(3) = −4, r′(8) = −2 and r(8) = 3, find p′(8).

3. If t(p) = u(v(w(p))) and u′(4) = 12, v′(−3) = 2, v(−3) = 4, w′(5) = 6 and w(5) = −3, find t′(5).

4. Given y = x3 + cosx2, find
dy

dx
.

5. Given f(x) = sin
(
cosx3

)
, find f ′(x).
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6. Given g(x) = sec8(5x3 − 17x), find g′(x).

7. Given y = csc2
(
cos2 x

)
, find

dy

dx
.

8. Given h(x) =
√
x− 1 +

√
x+ 1, find h′(x).

9. Given y = x2 tan

(
1

x

)
, find

dy

dx
.

10. Given y =
1√
cosx

, find
dy

dx
.
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11. Given p = 3

√
x− 3

2x+ 5
, find

dp

dx
.

12. Given w =

√
v + 1

v2 + 1
, find

dw

dv
.

13. Given y = cos(sin(tanx)), find
dy

dx
.

14. Given f(x) = cos
(√

tan3 x
)

, find f ′(x).
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15. Given f(x) = [g(x)]
n, find f ′(x).

16. Given g(x) = f (tanx), find g′(x).

17. Given h(x) = f
(
sec4 x

)
, find h′(x).

18. Given h(x) = f(x) · [g(x)]5, find h′(x).

19. Given g(x) = f(g(sinx)), find g′(x).

20. Given h(x) = f
(
[g(x)]

2
)

, find h′(x).
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21. If f(x) = g(x) · h(x), and g(5) = −3, g′(5) = 6, h(5) = 3 and h′(5) = −2, find f ′(5), if possible. If not possible, tell
what information is needed.

22. If f(x) = g(h(x)), and g(5) = −3, g′(5) = 6, h(5) = 3, and h′(5) = −2, find f ′(5), if possible. If not possible, tell
what information is needed.

23. If f(x) =
g(x)

h(x)
, and g(5) = −3, g′(5) = 6, h(5) = 3, and h′(5) = −2, find f ′(5), if possible. If not possible, tell what

information is needed.

24. If f(x) = [g(x)]
3, and g(5) = −3, g′(5) = 6, h(5) = 3, and h′(5) = −2, find f ′(5), if possible. If not possible, tell

what information is needed.
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25. Given f(x) = g(x2 + 4x), find f ′(x).

26. Given the information in the table and given the following functions, complete the table below. You may not be able to
fill in every box.

g(x) = f(x)− 2
r(x) = f(−3x)
h(x) = 2f(x)

s(x) = f(x+ 2)

x -2 -1 0 1 2 3

f ′(x) -2 2/3 -1/3 -1 -2 -4

g′(x)

h′(x)

r′(x)

s′(x)
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Differentiability

1. The graph of f is given below. State the x-values at which f is not differentiable and give a reason based on the definition
of differentiability at a number.

2. The graph of f is given below. State the x-values at which f is not differentiable and give a reason based on the
definition of differentiability at a number. Also state the x-values at which f is not continuous and give a reason based
on the definition of continuity at a number.
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3. Show that f(x) = |x− 6| is not differentiable at x = 6.

4. Where is the greatest integer function f(x) = ∥x∥ not differentiable?

5. Where and why is the following function given below not continuous? Where and why is it not differentiable?

f(x) =


x3 − x

x2 + x
if x < 1 but x ̸= 0

0 if x = 0
1− x if x ≥ 1

6. Given f(x) =

{
x2 if x ≤ 0

x− 4 if x > 0
, find f ′(x) and tell where (if anywhere) the derivative does not exist.
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Higher Order Derivatives

1. Given f(x) = x4 − 3x2 + 16x, find f ′(x) and f ′′(x).

2. Given h(x) =
√
x2 + 1, find h′(x) and h′′(x).

3. Given F (s) = (3s+ 8)8, find F ′(s) and F ′′(s).
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4. Given y =
x

1− x
, find

dy

dx
and

d2y

dx2
.

5. Given y = (1− x2)3/4, find
dy

dx
and

d2y

dx2
.

6. Given H(t) = tan3(2t− 1), find H ′(t) and H ′′(t).
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7. Given f(x) = 2 cosx+ sin2 x, find f ′(x) and f ′′(x).

8. Given f(x) =
√
5x− 1, find f ′′′(x).

9. Given f(x) =
1√

2− 3x
, find f(0), f ′(0), f ′′(0) and f ′′′(0).
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10. Given f(θ) = cot θ, find f ′′′
(π
6

)
.

11. If the position function of a particle is given by s(t) = t3 − 3t, find its velocity and acceleration functions, then find the
acceleration when the velocity is zero.

12. If the position function of a particle is given by s(t) = At2 + Bt + C, find its velocity and acceleration functions, then
find the acceleration when the velocity is zero.
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Derivative Review

Problems 1 - 6. State whether the following statements are true or false.

1. If f is continuous at a, then f is differentiable at a.

2. If f is differentiable at a, then f is continuous at a.

3. If f and g are differentiable,
d

dx
[f(x)g(x)] = f ′(x)g′(x).

4. If f is differentiable, then
d

dx

[√
f(x)

]
=

f ′(x)

2
√
f(x)

5. If g(x) = x5, then lim
x→2

g(x)− g(2)

x− 2
= 80

6. An equation of the tangent to the parabola y = x2 at (−2, 4) is y − 4 = 2x(x+ 2).

7. Given f(x) = x3 + 5x+ 4, find f ′(x) using the definition of derivative.
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8. Given f(x) =
√
3− 5x, find f ′(x) using the definition of derivative.

9. Given y = (x+ 2)8(x+ 3)6, find
dy

dx
.

10. Given y =
x√

9− 4x
, find

dy

dx
.
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11. Given f(x) =
x

8− 3x
, find f ′(x).

12. Given y = 5
√
x tanx, find

dy

dx
.

13. Given y =
(x− 1)(x− 4)

(x− 2)(x− 3)
, find

dy

dx
.

14. Given g(x) = tan
(√

1− x
)
, find g′(x).

15. Given y = sin
(
tan

(√
1− x2

))
, find

dy

dx
.
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16. Given h(x) = cot(3x2 + 5), find h′(x).

17. Given y = cos2(tanx), find
dy

dx
.

18. Given f(x) =
1

(2x− 1)5
, find f ′′(0).

19. Write an equation of a tangent to the curve y =
x

x2 − 2
at the point (2, 1).
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20. Write an equation of a tangent to the curve f(x) = tanx at the point
(π
3
,
√
3
)

.

21. At what points on the curve y = sinx+ cosx where x ∈ [0, 2π], is the tangent line horizontal?

22. Suppose that h(x) = f(x)g(x) and F (x) = f(g(x)) where f(2) = 3, g(2) = 5, g′(2) = 4, f ′(2) = −2 and f ′(5) = 11.
Find h′(2) and F ′(2).

47



23. Given f(x) = x2g(x), find f ′(x) in terms of g′(x).

24. Given f(x) = [g(x)]2, find f ′(x) in terms of g′(x).

25. Given f(x) = g(g(x)), find f ′(x) in terms of g′(x).

26. Given h(x) =
f(x)g(x)

f(x) + g(x)
, find h′(x) in terms of f ′(x) and g′(x).

27. Express the following as a derivative and then evaluate: lim
h→0

(2 + h)6 − 64

h
.
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