Advanced Placement Calculus

The Derivative

Definition of Derivative
Tangents, Velocities and Other Rates of Change
Differentiation Theorems
Derivatives of Trigonometric Functions
The Chain Rule
Additional Chain Rule Problems
Differentiability
Higher Order Derivatives
Derivative Review Problems

1. If $f(x)=3 x^{2}-5 x$, find $f^{\prime}(x)$ using the definition of derivative. Then find $f^{\prime}(2)$ and use it to write an equation of a tangent to the parabola $y=3 x^{2}-5 x$ at $(2,2)$.
2. If $F(x)=x^{3}-5 x+1$, find $F^{\prime}(x)$ using the definition of derivative. Then find $F^{\prime}(0)$ and use it to write an equation of a tangent to the curve $y=x^{3}-5 x+1$ at $(0,1)$.
3. A particle moves along a straight line with equation of motion $f(t)=t^{2}-6 t-5$ where position is measured in meters and time in seconds. Find the velocity at $t=2$.

For the following functions, find the derivative using the definition of derivative.
4. $f(x)=1+x-2 x^{2}$
5. $f(x)=\frac{x}{2 x-1}$
6. $f(x)=\frac{2}{\sqrt{3-x}}$
7. Consider $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$. This limit represents the derivative of some function at some number. Find the function and the number at which the derivative is being taken.
8. Consider $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$. This limit represents the derivative of some function at some number. Find the function and the number at which the derivative is being taken.
9. Consider $\lim _{t \rightarrow 0} \frac{\sin \left(\frac{\pi}{2}+t\right)-1}{t}$. This limit represents the derivative of some function at some number. Find the function
and the number at which the derivative is being taken.
10. Consider $\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}$. This limit represents the derivative of some function at some number. Find the function and the number at which the derivative is being taken.
11. Given $f(x)=5 x+3$, find $f^{\prime}(x)$ using the definition of derivative.
12. Given $f(x)=x^{3}-x^{2}+2 x$, find $f^{\prime}(x)$ using the definition of derivative.
13. Given $G(x)=\sqrt{1+2 x}$, find $G^{\prime}(x)$ using the definition of derivative.
14. Given $f(x)=x^{4}$, find $f^{\prime}(x)$ using the definition of derivative.
15. Use the sketch of f given below to estimate the following: $f^{\prime}(-3), f^{\prime}(1.5), f^{\prime}(-1)$ and $f^{\prime}(-4)$.

16. For the function graphed below, sketch the graph of $f^{\prime}(x)$. Draw $f^{\prime}(x)$ right on the same grid.

17. For the function graphed below, sketch the graph of $f^{\prime}(x)$. Draw $f^{\prime}(x)$ right on the same grid.

								$/$	

18. For the function graphed below, sketch the graph of $f^{\prime}(x)$. Draw $f^{\prime}(x)$ right on the same grid.

19. Using the definition of derivative, find the slope of the tangent line to the parabola $y=x^{2}+2 x$ at the point $(-3,3)$.
20. Using the definition of derivative, find the slope of the tangent line to the parabola $y=1-2 x-3 x^{2}$ at the point $(-2,-7)$.
21. Using the definition of derivative, find the slope of the tangent line to the curve $y=\frac{1}{x^{2}}$ at $x=-2$.
22. Using the definition of derivative, find the slope of the tangent line to the curve $y=\frac{2}{x+3}$ at $x=-1$.
23. If a ball is thrown vertically upward with a velocity of 40 feet per second, its height in feet after t seconds is given by $y=40 t-16 t^{2}$. Using the definition of derivative, find the velocity when $t=2$.
24. The displacement in meters of a particle moving in a straight line is given by $s=t^{2}-8 t+18$, where t is measured in seconds. Find the average velocity on the the following intervals: $[3,4],[3.5,4],[4,5]$ and $[4,4.5]$. Then, using the definition of derivative, find the velocity when $t=4$.
25. Given $f(x)=x^{2}-10 x+100$, find $f^{\prime}(x)$.
26. Given $V(r)=\frac{4}{3} \pi r^{3}$, find $V^{\prime}(r)$.
27. Given $F(x)=(16 x)^{3}$, find $F^{\prime}(x)$.
28. Given $Y(t)=6 t^{-9}$, find $Y^{\prime}(t)$.
29. Given $g(x)=x^{2}+\frac{1}{x^{2}}$, find $g^{\prime}(x)$.
30. Given $h(x)=\frac{x+2}{x-1}$, find $h^{\prime}(x)$.
31. Given $G(s)=\left(s^{2}+s+1\right)\left(s^{2}+2\right)$, find $G^{\prime}(s)$.
32. Given $H(t)=\sqrt[3]{t}(t+2)$, find $H^{\prime}(t)$.
33. Given $y=\frac{x^{2}+4 x+3}{\sqrt{x}}$, find $\frac{d y}{d x}$.
34. Given $y=\sqrt{5 x}$, find $\frac{d y}{d x}$.
35. Given $y=\frac{1}{x^{4}+x^{2}+1}$, find $\frac{d y}{d x}$.
36. Given $y=a x^{2}+b x+c$ where a, b and c are constants, find $\frac{d y}{d x}$.
37. Given $y=\frac{3 t-7}{t^{2}+5 t-4}$, find $\frac{d y}{d t}$.
38. Given $y=x+\sqrt[5]{x^{2}}$, find $\frac{d y}{d x}$.
39. Given $f(x)=x^{\sqrt{2}}$, find $f^{\prime}(x)$.
40. Given $v=x \sqrt{x}+\frac{1}{x^{2} \sqrt{x}}$, find $\frac{d v}{d x}$.
41. Given $f(x)=\frac{x}{x+\frac{c}{x}}$, where c is a constant, find $f^{\prime}(x)$.
42. Given $f(x)=\frac{x^{5}}{x^{3}-2}$, find $f^{\prime}(x)$.
43. Write an equation of a line tangent to $y=\frac{x}{x-3}$ at the point $(6,2)$.
44. Write an equation of a line tangent to $y=x^{5 / 2}$ at the point $(4,32)$.
45. Write an equation of a line tangent to $y=x+\frac{4}{x}$ at the point where $x=2$.
46. Find the equations of the tangent lines to the curve $y=\frac{x-1}{x+1}$ that are parallel to the line $x-2 y=1$.
47. At what point on the curve $y=x \sqrt{x}$ is the tangent line parallel to $3 x-y+6=0$?
48. For what values of x does the graph of $f(x)=2 x^{3}-3 x^{2}-6 x+87$ have a horizontal tangent?
49. Find the points on the curve $y=x^{3}-x^{2}-x+1$ where the tangent is horizontal.
50. Find the equations of both lines that pass through the point $(2,-3)$ that are tangent to the curve $y=x^{2}+x$.
51. Write an equation of the normal to $y=1-x^{2}$ at the point $(2,-3)$.
52. Write an equation of the normal to $y=\sqrt[3]{x}$ at the point $(-8,-2)$.
53. At what point on the curve $y=x^{4}$ does the normal line have slope 16 ?
54. Evaluate: $\lim _{x \rightarrow 0}\left(x^{2}+\cos x\right)$
55. Evaluate: $\lim _{x \rightarrow \pi / 3}(\sin x-\cos x)$
56. Evaluate: $\lim _{t \rightarrow \pi / 4} \frac{\sin 5 t}{t}$
57. Evaluate: $\lim _{x \rightarrow 0} \frac{\sin (\cos x)}{\sec x}$
58. Evaluate: $\lim _{x \rightarrow \pi / 4} \frac{\sin x}{3 x}$
59. Evaluate: $\lim _{x \rightarrow \pi / 4} \frac{\tan x}{4 x}$
60. Evaluate: $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}$
61. Evaluate: $\lim _{x \rightarrow 0} \frac{\tan 3 x}{3 \tan 2 x}$
62. Given $y=\cos x-2 \tan x$, find $\frac{d y}{d x}$.
63. Given $y=\sin x+\cos x$, find $\frac{d y}{d x}$.
64. Given $y=x \csc x$, find $\frac{d y}{d x}$.
65. Given $y=\csc x \cot x$, find $\frac{d y}{d x}$.
66. Given $y=\frac{\sin x}{1+\cos x}$, find $\frac{d y}{d x}$.
67. Given $y=\frac{\tan x}{x}$, find $\frac{d y}{d x}$.
68. Given $y=\frac{x}{\sin x+\cos x}$, find $\frac{d y}{d x}$.
69. Given $f(x)=x^{-3} \sin x \tan x$, find $f^{\prime}(x)$.
70. Given $g(x)=\frac{x^{2} \tan x}{\sec x}$, find $g^{\prime}(x)$.
71. Write an equation of the line tangent to $y=x \cos x$ at the point $(\pi,-\pi)$.
72. Write an equation of the line tangent to $f(x)=\tan x$ at the point $\left(\frac{\pi}{4}, 1\right)$.
73. Write an equation of the line tangent to $g(x)=2 \sin x$ at the point where $x=\frac{\pi}{6}$.
74. For what values of x does the graph of $f(x)=x+2 \sin x$ have a horizontal tangent?
75. Given $y=u^{2}$ and $u=x^{2}+2 x+3$, find $\frac{d y}{d x}$.
76. Given $y=u^{2}-2 u+3$ and $u=5-6 x$, find $\frac{d y}{d x}$.
77. Given $y=u^{3}$ and $u=x+\frac{1}{x}$, find $\frac{d y}{d x}$.
78. Given $y=u-u^{2}$ and $u=\sqrt{x}+\sqrt[3]{x}$, find $\frac{d y}{d x}$.
79. Given $F(x)=\left(x^{2}+4 x+6\right)^{2}$, find $F^{\prime}(x)$.
80. Given $G(x)=\left(x^{3}-5 x\right)^{4}$, find $G^{\prime}(x)$.
81. Given $g(x)=(3 x-2)^{10}\left(5 x^{2}-x+1\right)^{12}$, find $g^{\prime}(x)$.
82. Given $f(t)=\left(2 t^{2}-6 t+1\right)^{-8}$, find $f^{\prime}(t)$.
83. Given $g(x)=\sqrt{x^{2}-7 x}$, find $g^{\prime}(x)$.
84. Given $h(t)=\left(t-\frac{1}{t}\right)^{3 / 2}$, find $h^{\prime}(t)$.
85. Given $f(y)=\left(\frac{y-6}{y+7}\right)^{3}$, find $f^{\prime}(y)$.
86. Given $s(t)=\sqrt[4]{\frac{t^{3}+1}{t^{3}-1}}$, find $s^{\prime}(t)$.
87. Given $f(z)=\frac{1}{\sqrt[5]{2 z-1}}$, find $f^{\prime}(z)$.
88. Given $y=\tan 3 x$, find $\frac{d y}{d x}$.
89. Given $f(x)=\cos \left(x^{3}\right)$, find $f^{\prime}(x)$.
90. Given $f(x)=\cos ^{3} x$, find $f^{\prime}(x)$.
91. Given $y=\left(1+\cos ^{2} x\right)^{6}$, find $\frac{d y}{d x}$.
92. Given $y=\cos (\tan x)$, find $\frac{d y}{d x}$.
93. Given $f(x)=\sec ^{2} 2 x-\tan ^{2} 2 x$, find $f^{\prime}(x)$.
94. Given $y=\csc \left(\frac{x}{3}\right)$, find $\frac{d y}{d x}$.
95. Given $y=\sin ^{3} x+\cos ^{3} x$, find $\frac{d y}{d x}$.
96. Given $p(x)=\sin \left(\frac{1}{x}\right)$, find $p^{\prime}(x)$.
97. Given $y=\frac{1+\sin x}{1-\sin x}$, find $\frac{d y}{d x}$.
98. Given $y=\tan ^{2} x^{2}$, find $\frac{d y}{d x}$.
99. Given $y=\sqrt{x+\sqrt{x}}$, find $\frac{d y}{d x}$.
100. Write an equation of the tangent to the curve $y=\left(x^{3}-x^{2}+x-1\right)^{10}$ at the point $(1,0)$.
101. Write an equation of the tangent to the curve $f(x)=\frac{8}{\sqrt{4+3 x}}$ at the point $(4,2)$.
102. Find all the points on the graph of the function $f(x)=2 \sin x+\sin ^{2} x$ at which the tangent line is horizontal.
103. Suppose that $F(x)=f(g(x))$ and $g(3)=6, g^{\prime}(3)=4, f^{\prime}(3)=2$ and $f^{\prime}(6)=7$. Find $F^{\prime}(3)$.
104. Given $h(x)=f(g(x))$ and $f(2)=5, f^{\prime}(2)=6, g(3)=2$ and $g^{\prime}(3)=5$, find $h^{\prime}(3)$.
105. Given $p(x)=q(r(x))$ and $q(-2)=5, q^{\prime}(3)=-4, r^{\prime}(8)=-2$ and $r(8)=3$, find $p^{\prime}(8)$.
106. If $t(p)=u(v(w(p)))$ and $u^{\prime}(4)=12, v^{\prime}(-3)=2, v(-3)=4, w^{\prime}(5)=6$ and $w(5)=-3$, find $t^{\prime}(5)$.
107. Given $y=x^{3}+\cos x^{2}$, find $\frac{d y}{d x}$.
108. Given $f(x)=\sin \left(\cos x^{3}\right)$, find $f^{\prime}(x)$.
109. Given $g(x)=\sec ^{8}\left(5 x^{3}-17 x\right)$, find $g^{\prime}(x)$.
110. Given $y=\csc ^{2}\left(\cos ^{2} x\right)$, find $\frac{d y}{d x}$.
111. Given $h(x)=\sqrt{x-1}+\sqrt{x+1}$, find $h^{\prime}(x)$.
112. Given $y=x^{2} \tan \left(\frac{1}{x}\right)$, find $\frac{d y}{d x}$.
113. Given $y=\frac{1}{\sqrt{\cos x}}$, find $\frac{d y}{d x}$.
114. Given $p=\sqrt[3]{\frac{x-3}{2 x+5}}$, find $\frac{d p}{d x}$.
115. Given $w=\frac{\sqrt{v}+1}{v^{2}+1}$, find $\frac{d w}{d v}$.
116. Given $y=\cos (\sin (\tan x))$, find $\frac{d y}{d x}$.
117. Given $f(x)=\cos \left(\sqrt{\tan ^{3} x}\right)$, find $f^{\prime}(x)$.
118. Given $f(x)=[g(x)]^{n}$, find $f^{\prime}(x)$.
119. Given $g(x)=f(\tan x)$, find $g^{\prime}(x)$.
120. Given $h(x)=f\left(\sec ^{4} x\right)$, find $h^{\prime}(x)$.
121. Given $h(x)=f(x) \cdot[g(x)]^{5}$, find $h^{\prime}(x)$.
122. Given $g(x)=f(g(\sin x))$, find $g^{\prime}(x)$.
123. Given $h(x)=f\left([g(x)]^{2}\right)$, find $h^{\prime}(x)$.
124. If $f(x)=g(x) \cdot h(x)$, and $g(5)=-3, g^{\prime}(5)=6, h(5)=3$ and $h^{\prime}(5)=-2$, find $f^{\prime}(5)$, if possible. If not possible, tell what information is needed.
125. If $f(x)=g(h(x))$, and $g(5)=-3, g^{\prime}(5)=6, h(5)=3$, and $h^{\prime}(5)=-2$, find $f^{\prime}(5)$, if possible. If not possible, tell what information is needed.
126. If $f(x)=\frac{g(x)}{h(x)}$, and $g(5)=-3, g^{\prime}(5)=6, h(5)=3$, and $h^{\prime}(5)=-2$, find $f^{\prime}(5)$, if possible. If not possible, tell what information is needed.
127. If $f(x)=[g(x)]^{3}$, and $g(5)=-3, g^{\prime}(5)=6, h(5)=3$, and $h^{\prime}(5)=-2$, find $f^{\prime}(5)$, if possible. If not possible, tell what information is needed.
128. Given $f(x)=g\left(x^{2}+4 x\right)$, find $f^{\prime}(x)$.
129. Given the information in the table and given the following functions, complete the table below. You may not be able to fill in every box.

$$
\begin{gathered}
g(x)=f(x)-2 \\
r(x)=f(-3 x) \\
h(x)=2 f(x) \\
s(x)=f(x+2)
\end{gathered}
$$

x	-2	-1	0	1	2	3
$f^{\prime}(x)$	-2	$2 / 3$	$-1 / 3$	-1	-2	-4
$g^{\prime}(x)$						
$h^{\prime}(x)$						
$r^{\prime}(x)$						
$s^{\prime}(x)$						

1. The graph of f is given below. State the x-values at which f is not differentiable and give a reason based on the definition of differentiability at a number.

2. The graph of f is given below. State the x-values at which f is not differentiable and give a reason based on the definition of differentiability at a number. Also state the x-values at which f is not continuous and give a reason based on the definition of continuity at a number.

3. Show that $f(x)=|x-6|$ is not differentiable at $x=6$.
4. Where is the greatest integer function $f(x)=\|x\|$ not differentiable?
5. Where and why is the following function given below not continuous? Where and why is it not differentiable?

$$
f(x)=\left\{\begin{array}{cl}
\frac{x^{3}-x}{x^{2}+x} & \text { if } x<1 \text { but } x \neq 0 \\
0 & \text { if } x=0 \\
1-x & \text { if } x \geq 1
\end{array}\right.
$$

6. Given $f(x)=\left\{\begin{array}{cl}x^{2} & \text { if } x \leq 0 \\ x-4 & \text { if } x>0\end{array}\right.$, find $f^{\prime}(x)$ and tell where (if anywhere) the derivative does not exist.
7. Given $f(x)=x^{4}-3 x^{2}+16 x$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
8. Given $h(x)=\sqrt{x^{2}+1}$, find $h^{\prime}(x)$ and $h^{\prime \prime}(x)$.
9. Given $F(s)=(3 s+8)^{8}$, find $F^{\prime}(s)$ and $F^{\prime \prime}(s)$.
10. Given $y=\frac{x}{1-x}$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
11. Given $y=\left(1-x^{2}\right)^{3 / 4}$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
12. Given $H(t)=\tan ^{3}(2 t-1)$, find $H^{\prime}(t)$ and $H^{\prime \prime}(t)$.
13. Given $f(x)=2 \cos x+\sin ^{2} x$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
14. Given $f(x)=\sqrt{5 x-1}$, find $f^{\prime \prime \prime}(x)$.
15. Given $f(x)=\frac{1}{\sqrt{2-3 x}}$, find $f(0), f^{\prime}(0), f^{\prime \prime}(0)$ and $f^{\prime \prime \prime}(0)$.
16. Given $f(\theta)=\cot \theta$, find $f^{\prime \prime \prime}\left(\frac{\pi}{6}\right)$.
17. If the position function of a particle is given by $s(t)=t^{3}-3 t$, find its velocity and acceleration functions, then find the acceleration when the velocity is zero.
18. If the position function of a particle is given by $s(t)=A t^{2}+B t+C$, find its velocity and acceleration functions, then find the acceleration when the velocity is zero.

Problems 1-6. State whether the following statements are true or false.

1. If f is continuous at a, then f is differentiable at a.
2. If f is differentiable at a, then f is continuous at a.
3. If f and g are differentiable, $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g^{\prime}(x)$.
4. If f is differentiable, then $\frac{d}{d x}[\sqrt{f(x)}]=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}$
5. If $g(x)=x^{5}$, then $\lim _{x \rightarrow 2} \frac{g(x)-g(2)}{x-2}=80$
6. An equation of the tangent to the parabola $y=x^{2}$ at $(-2,4)$ is $y-4=2 x(x+2)$.
7. Given $f(x)=x^{3}+5 x+4$, find $f^{\prime}(x)$ using the definition of derivative.
8. Given $f(x)=\sqrt{3-5 x}$, find $f^{\prime}(x)$ using the definition of derivative.
9. Given $y=(x+2)^{8}(x+3)^{6}$, find $\frac{d y}{d x}$.
10. Given $y=\frac{x}{\sqrt{9-4 x}}$, find $\frac{d y}{d x}$.
11. Given $f(x)=\frac{x}{8-3 x}$, find $f^{\prime}(x)$.
12. Given $y=\sqrt[5]{x \tan x}$, find $\frac{d y}{d x}$.
13. Given $y=\frac{(x-1)(x-4)}{(x-2)(x-3)}$, find $\frac{d y}{d x}$.
14. Given $g(x)=\tan (\sqrt{1-x})$, find $g^{\prime}(x)$.
15. Given $y=\sin \left(\tan \left(\sqrt{1-x^{2}}\right)\right)$, find $\frac{d y}{d x}$.
16. Given $h(x)=\cot \left(3 x^{2}+5\right)$, find $h^{\prime}(x)$.
17. Given $y=\cos ^{2}(\tan x)$, find $\frac{d y}{d x}$.
18. Given $f(x)=\frac{1}{(2 x-1)^{5}}$, find $f^{\prime \prime}(0)$.
19. Write an equation of a tangent to the curve $y=\frac{x}{x^{2}-2}$ at the point $(2,1)$.
20. Write an equation of a tangent to the curve $f(x)=\tan x$ at the point $\left(\frac{\pi}{3}, \sqrt{3}\right)$.
21. At what points on the curve $y=\sin x+\cos x$ where $x \in[0,2 \pi]$, is the tangent line horizontal?
22. Suppose that $h(x)=f(x) g(x)$ and $F(x)=f(g(x))$ where $f(2)=3, g(2)=5, g^{\prime}(2)=4, f^{\prime}(2)=-2$ and $f^{\prime}(5)=11$. Find $h^{\prime}(2)$ and $F^{\prime}(2)$.
23. Given $f(x)=x^{2} g(x)$, find $f^{\prime}(x)$ in terms of $g^{\prime}(x)$.
24. Given $f(x)=[g(x)]^{2}$, find $f^{\prime}(x)$ in terms of $g^{\prime}(x)$.
25. Given $f(x)=g(g(x))$, find $f^{\prime}(x)$ in terms of $g^{\prime}(x)$.
26. Given $h(x)=\frac{f(x) g(x)}{f(x)+g(x)}$, find $h^{\prime}(x)$ in terms of $f^{\prime}(x)$ and $g^{\prime}(x)$.
27. Express the following as a derivative and then evaluate: $\lim _{h \rightarrow 0} \frac{(2+h)^{6}-64}{h}$.
