Advanced Placement Calculus

Area and Volume

Areas Between Curves Volumes by Slicing Volumes Using Dish/Washer Method Volumes Using Shells 1. Find the area of the region bounded by $y = x^2 + 3$, y = x, x = -1 and x = 1.

2. Find the area of the region bounded by $x = y^3 - y$ and $x = 1 - y^4$.

3. Find the area of the region bounded by y = x and $y = x^2$.

4. Find the area of the region bounded by $y = \sqrt{x}$ and $y = \frac{x}{2}$.

5. Find the area of the region bounded by $y = 4x^2$ and $y = x^2 + 3$.

6. Find the area of the region bounded by $f(x) = x^2 + 2$, g(x) = 2x + 5, x = 0 and x = 6.

7. Find the area of the region bounded by $y^2 = x$ and x - 2y = 3.

8. Find the area of the region bounded by y = x, $y = \sin x$, $x = -\frac{\pi}{4}$ and $x = \frac{\pi}{2}$.

9. Find the area of the region bounded by $y = \cos x$, $y = \sin 2x$, x = 0 and $x = \frac{\pi}{2}$.

10. Find the area of the region bounded by x = 3y, x + y = 0 and 7x + 3y = 24.

11. Find the area of the region bounded by $y = x^2$ and $y = \frac{2}{x^2 + 1}$.

12. Find the area of the region bounded by $y = 2^x$, $y = 5^x$, x = -1 and x = 1.

13. Find the area of the region bounded by $f(x) = e^x$, $g(x) = e^{-x}$, x = -2 and x = 1.

14. Find the area of the region bounded by $y^3 = x^2$ and x - 3y + 4 = 0.

15. Find the area of the region bounded by $x = 4 - y^2$ and x = 4 - 4y.

16. Find the area of the region bounded by $f(x) = 2x^3 - 3x^2 - 9x$ and $g(x) = x^3 - 2x^2 - 3x$.

1. Find the volume of the solid whose base is bounded by $x^2 + y^2 = 9$ and whose cross-section taken perpendicular to the x-axis are squares.

2. Find the volume of the solid whose base is bounded by $y^2 = x - 5$ and x = 10 and whose cross-section taken perpendicular to the x-axis are equilateral triangles.

3. Find the volume of the solid whose base is bounded by $y^2 = x - 5$ and x = 10 and whose cross-section taken perpendicular to the x-axis are squares.

4. Find the volume of the solid whose base is bounded by $y^2 = x - 5$ and x = 10 and whose cross-sections taken perpendicular to the x-axis are semicircles.

5. Find the volume of the solid whose base is bounded by y = x + 1 and $y = x^2 - 1$ and whose cross-sections taken perpendicular to the x-axis are squares.

Problems 6-17: Use the disk/washer method. It is to your advantage to include a detailed and appropriately labeled sketch.

^{6.} Find the volume of the solid generated when the region bounded by $y = x^2$, x = 1 and y = 0 is revolved about the x-axis.

7. Find the volume of the solid generated when the region bounded by $y^2 = x^3$, x = 4 and y = 0 is revolved about the x-axis.

8. Find the volume of the solid generated when the region bounded by $y = x^2$ and $y^2 = x$ is revolved about the x-axis.

9. Find the volume of the solid generated when the region bounded by $y = x^4$ and y = 1 is revolved about the line y = 2.

10. Find the volume of the solid generated when the region bounded by $y = 2x - x^2$, y = 0, x = 0 and x = 1 is revolved about the line x = -3.

11. Set up but do not evaluate an integral which will yield the volume of the solid generated when the region bounded by $y = \ln x$, y = 1 and x = 1 is revolved about the x-axis.

12. Set up but do not evaluate an integral which will yield the volume of the solid generated when the region bounded by x - y = 1 and $y = (x - 4)^2 + 1$ is revolved about the line y = 7.

13. Set up but do not evaluate an integral which will yield the volume of the solid generated when the region bounded by 2x + 3y = 6 and $(y - 1)^2 = 4 - x$ is revolved about the line x = -5.

14. Find the volume of the solid, in Quadrant I, generated when the region bounded by $y = \sqrt[3]{x}$, y = 2 and x = 0 is revolved about the x-axis.

15. Find the volume of the solid, in Quadrant I, generated when the region bounded by $y = \sqrt[3]{x}$, y = 2 and x = 0 is revolved about the line y = 2.

16. Find the volume of the solid, in Quadrant I, generated when the region bounded by $y = \sqrt[3]{x}$ and x = 4y is revolved about the line x = 8.

17. Find the volume of the solid, in Quadrant I, generated when the region bounded by $y = \sqrt[3]{x}$ and x = 4y is revolved about the line y = 2.

Problems 18-29: Use the shell method. It is to your advantage to include a detailed and appropriately labeled sketch.

18. Find the volume of the solid generated when the region bounded by $y = x^2$, y = 0, x = 1 and x = 2 is revolved about the *y*-axis.

19. Find the volume of the solid generated when the region bounded by $y = \frac{1}{x}$, y = 0, x = 1 and x = 10 is revolved about the *y*-axis.

^{20.} Find the volume of the solid generated when the region bounded by $y = e^{-x^2}$, y = 0, x = 0 and x = 1 is revolved about the y-axis.

21. Find the volume of the solid generated when the region bounded by $y = \sin x^2$, y = 0, x = 0 and $x = \pi$ is revolved about the *y*-axis.

22. Find the volume of the solid generated when the region bounded by $y = x^2 - 6x + 10$ and $y = -x^2 + 6x - 6$ is revolved about the *y*-axis.

^{23.} Find the volume of the solid generated when the region bounded by $x = \sqrt[4]{y}$, x = 0 and y = 16 is revolved about the x-axis.

24. Find the volume of the solid generated when the region bounded by $y = x^2$, y = 0, x = 1 and x = 2 is revolved about the line x = 1.

25. Find the volume of the solid generated when the region bounded by $y = \sqrt{x-1}$, y = 0 and x = 5 is revolved about the line y = 3.

^{26.} Find the volume of the solid generated when the region bounded by $y = 4x - x^2$ and $y = 8x - 2x^2$ is revolved about the line x = -2.

27. Set up but do not evaluate an integral which will yield the volume of the solid generated when the region bounded by $x = 4 - y^2$ and $x = 8 - 2y^2$ is revolved about the line y = 5.

28. Set up but do not evaluate an integral which will yield the volume of the solid generated when the region bounded by $y = x^4$ and $y = \sin \frac{\pi x}{2}$ is revolved about the line x = -1.

29. Set up but do not evaluate an integral which will yield the volume of the solid generated when the region bounded by $y = \frac{1}{1+x^2}$, y = 0, x = 0 and x = 3 is revolved about the *y*-axis.