Advanced Placement Calculus

Additional Definite Integral Topics

Average Value of a Function Definite Integral as an Accumulator Problems 1-3: Use the property $m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$ to find a lower and upper bound on the following integrals...without integrating!

$$1. \int_{1}^{2} \frac{1}{x} dx$$

2.
$$\int_{0}^{2} \sqrt{x^3 + 1} \, dx$$

3.
$$\int_{-1}^{1} \sqrt{1+x^4} \, dx$$

Problems 4-7: Find the average value of the following functions on the given interval.

4. $f(x) = x^2 - 2x$ on [0,3].

5. $f(x) = x^4$ on [-1, 1].

6. $f(x) = \sin^2 x \cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{4} \right]$.

7.
$$f(x) = \frac{1}{x}$$
 on [1,4].

Problems 8-11: Find the average value of the given function on the given interval and then find the value of c such that $f_{avg} = f(c)$.

8. $f(x) = 4 - x^2$ on [0, 2].

9. $f(x) = 4x - x^2$ on [0, 3].

10. $f(x) = x^3 - x + 1$ on [0, 2].

11. $f(x) = x \sin x^2$ on $[0, \sqrt{\pi}]$.

1. Given that h'(t) is the rate of change in a child's height measured in inches per year, what does the integral $\int_{0}^{0} h'(t) dt$ represent and what are its units?

2. Given that r'(t) is the rate of change in the radius of a spherical balloon measured in centimeters per second, what does the integral $\int_{1}^{2} r'(t) dt$ represent and what are its units?

3. Given that v(t) is the velocity of a particle in rectilinear motion, measured in centimeters per hour, what does the integral $\int_{t_1}^{t_2} v(t) dt$ represent and what are its units?

^{4.} Suppose that sludge is emptied into a river at the rate of V(t() gallons per minute, starting at time t = 0. Write an integral that represents the total volume of sludge that is emptied into the river during the first hour.

5. The marginal cost (the cost of the *n*th item) is given by C'(x) = 2x + 1. If the cost of producing 2 items is \$50, find (a) the total cost function, (b) the cost of making 50 items and (c) the cost of making the 9th through the 100th item.

6. A particle's velocity is given by $v(t) = t^2 - 2t - 8$. Find the net distance and the total distance traveled from t = 1 to t = 6.

7. A particle's velocity is given by $v(t) = .5 - te^{-t}$. Find the net distance and the total distance traveled from t = 0 to t = 5.

8. A particle moves along the x-axis so that at any time t, 0 ≤ t ≤ 5, its velocity is given by v(t) = sin t + e^{-t}. When t = 0, the particle is at the origin. (a) Write an expression for the position x(t) of the particle at any time t, 0 ≤ t ≤ 5. (b) Find all the values of t for which the particle is at rest. (c) For 0 ≤ t ≤ 5, find the average value of the position function determined in part (a). (d) Find the total distance traveled by the particle from t = 0 to t = 5.

9. An animal population is increasing at a rate of 200 + 50t per year (where t is measured in years). By how much does the animal population increase between the fourth and tenth years?

10. An engineer studying the power consumption of a manufacturing plant determines that the plant's daily rate of electricity usage in kilowatts per hour can be reasonably modeled by the formula: $R(t) = 2000e^{-t/48} + 500\sin\left(\frac{\pi}{12}t\right)$ where $0 \le t \le 24$. (a) How many kilowatts of electricity does the plant use in a 24-hour period? (b) Find the average rate of electricity usage over the first 8 hours. (c) Determine the maximum rate of electricity usage during the first 8-hour period to 3 decimal places.

11. A particle moves along the x-axis with a velocity given by $v(t) = e^t - 2$. Find the total and net distance the particle travels from t = 0 to t = 3.

12. A particle moves along the x-axis with a velocity given by $v(t) = t^3 - 3t^2 + 2t$. Find the total and net distance traveled from t = 0 to t = 3.

13. A particle moves along the x-axis with a velocity given by $v(t) = \sin t$. Find the total and net distance traveled from t = 0 to $t = \frac{\pi}{2}$.

14. A particle moves along the x-axis with a velocity given by v(t) = |t - 3|. Find the total and net distance traveled from t = 0 to t = 5.

15. If the average American's annual income is changing at a rate given in dollars per month by $r(t) = 40(1.002)^t$ where t is in months from January 1,2000. What change in income can the average American expect during the year 2000?

16. A cup of coffee at 90 degrees centigrade is put into a 20 degree room when t = 0. If the coffee's temperature is changing at a rate given in degrees centigrade per minute by $r(t) = -7e^{-0.1t}$, t in minutes, estimate, to one decimal place, the coffee's temperature when t = 10.

17. The graph below shows the function R(t) which describes the rate (in gallons per hour) that water is leaking out of a container, where t is measured in hours. Write an integral which would express the total amount of water that leaks our in the first 2 hours. Use the graph to estimate the total amount of water that leaks out in the first 5 hours and in the first 10 hours.

